Communication Among Biological Nanomachines

Tatsuya Suda
University of California, Irvine
suda@ics.uci.edu
and
NTT DoCoMo, Inc

Enomoto, Nakano, Egashira, Moore (UCI)
Hiyama, Moritani (Docomo)

Biological Nanomachine Communication

• Goal
 – To achieve communication between biological nanomachines
 • Nanomachines: molecular-cell scale objects that are capable of performing simple tasks
Nanomachines

• Biological nanomachines
 – Cells
 – Dynein Molecular Mortor
 • Carries proteins by sliding over the rails (microtubule) in cells.
 – F1ATPase
 • Synthesizes ATP (energy) and rotates using influx of protons
 – Bacterium
 • Swims toward the chemicals (e.g., food) using flagellum

• Biological nanomachines
 – logic gates made of biological components (e.g., enzymes or bacteria)
 • If both substrate and effector exist, product produced
 • If no effector or no substrate, substrate remains unchanged
• Artificial nanomachines
 – MEMS/NEMS
 – Micron motor
 • Size: 100 um in diameter
 • Rotates up to 10,000 rpm

MEMS/NEMS: http://www.fujita3.iis.u-tokyo.ac.jp/

Applications

• Pinpoint drug delivery
 – To deliver drug to (targeted) cancer cells
• Molecular Computing
 – Communication among “logical gates” allows coordination among distributed logical gates
Nano/Micro-Scale Communication in Biological Systems

• Intracellular communication (vesicles transported by molecular motors)

A vesicle transported by a kinesin motor toward the periphery of the cell

A vesicle transported by a dynein motor toward the center of the cell

• Intercellular communication
 – Cells coordinate through calcium signaling

Molecular Communication

- Make bio nanomachines communicate using communication mechanisms in real world biological entities
 - Senders/receivers = biological nanomachines
 - Communication carrier = molecules (e.g., proteins, ions, DNAs)
 - Communication distance = nano/micro scale
 - A receiver (chemically/physically) reacts to incoming molecules

An Example System

Nano/micro-scale communication

- Information molecules (Proteins, ions, DNAs, etc)
- Carrier molecules (Rail molecules, hormones, etc)
Key System Components

• A sender
 – Molecule generation
 – Molecule encoding
 – Molecule emission
• Propagation
 – Molecule loading at a sender
 – Direction control
 – Molecule unloading at a receiver
 – Molecule recycling

• A receiver
 – Molecule reception
 – Molecule decoding
 – Molecule decomposition or recycling
An Example Component: A Sender

- Artificially synthesized cell

![Diagram showing the process of a Sender nanomachine](image)

<table>
<thead>
<tr>
<th>Stable</th>
<th>Instable</th>
<th>Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration LOW</td>
<td>Concentration HIGH</td>
<td>Concentration LOW</td>
</tr>
</tbody>
</table>

- Genetically altered mutant cell

![Diagram showing the process of a Sender nanomachine](image)

Encoding by controlling density of emitting molecules
An Example Component: *Propagation Direction Control*

- Information molecules (vesicles)
 - loaded onto molecular motors
 - transported by molecular motors

- Rail molecule network
 - Self organizing creation of rail molecule network
An Example Component: A Receiver

- An artificially synthesized cell

- Reception
 - Using artificial receptors
 - Liposome-liposome merger

- Decoding
 - A receiver reacts to incoming molecules, or
 - A receiver converts incoming molecules to another type (e.g., using enzymes)

Other Components

- Intermediate nodes
 - For multihop communication
System Characteristics

• We want the system to be
 – Autonomous (i.e., no human control)
 – Closed (i.e., no energy supply from outside)
 – Recycling (of carrier molecules and information molecules)

• Other system characteristics
 – Probabilistic behavior
 – Many to many communication
 – Slow delivery of molecules

Research Issues

• Developing applications that require communication among bio nanomachines
• System designs using biological communication mechanisms
 – Autonomous, closed, recycling system
 – Various system components
• Creating new “information” and “coding” concepts and models
• Various approaches
 – Feasibility test through experiments
 – Theoretical modeling and analysis
 – Simulations
Conclusions

• Molecular Communication
 – New paradigm
 – Need a lot of research
 • Integrating nano technology, bio technology and computer science